当前位置: 首页 > 计划总结 > 工作计划

高二数学说课稿范文

时间:2024-01-12 工作计划 我要投稿

高二数学说课稿范文六篇

【教学计划】导语,我们眼前所阅读的此篇六篇 共有16048文字,由河南省焦作市网友能说会道的冬暖夏凉认真改进上传。欢迎来借鉴,希望对你有帮助! 稿子汇 www.gaozihui.com

稿子汇 www.gaozihui.com

【高二数学说课稿 第一篇】

高二数学说课稿 公文汇 www.gongwenhui.com

尊敬的各位老师,大家好!我今天将为大家带来一堂高二数学课的说课稿。

稿子汇,范文学习文库

一、教材分析 公文汇,办公文档之家

本堂课我们所使用的教材是高中数学新课标人教版。本次课的内容主要涉及到二次函数和三角函数的综合运用。

二、教学目标

1. 知识与技能:学习二次函数的相关概念、图像及性质;掌握二次函数的变换、求解以及应用;学习三角函数的基本概念及其图像;掌握三角函数的性质和基本变换。

2. 过程与方法:通过分组合作、小组讨论、归纳总结等方式,培养学生的合作能力和分析问题的能力;通过彩虹学习法、小组探究等方式,培养学生的自主学习能力和问题解决能力。

3. 情感态度和价值观:通过案例分析和实际问题的运用,培养学生的数学思维、逻辑思维和推理思维;通过鼓励学生的创新和探索,培养学生的兴趣和能力,激发学生对数学的热爱。

三、教学重点与难点

本节课的教学重点是二次函数和三角函数的综合运用,特别是在应用题中体现出来的问题解决能力。教学难点是让学生灵活运用二次函数和三角函数的知识,解决实际问题。

四、教学过程

1. 导入新课:通过简单的生活场景,引入二次函数和三角函数的概念。比如,掷硬币的高度、建筑的投影等。

2. 知识讲解:通过课件和黑板等媒介,讲解二次函数和三角函数的基本概念、图像及性质。可以借助示意图和实例进行解释和演示。

3. 练习巩固:通过做一些简单的练习题,确保学生对二次函数和三角函数的基本概念有了初步的掌握。可以在黑板上列出几道题目,让学生上台解答,并进行讨论。

4. 运用拓展:根据实际问题设计一系列应用题,让学生灵活运用二次函数和三角函数的知识,解决问题。可以将学生分组,让每个小组分析解决一道应用题,并在课堂上展示。

5. 归纳总结:通过学生的解答和讨论,总结二次函数和三角函数的性质和变换规律。引导学生进行归纳和总结,提高学生的学习效果。

6. 作业布置:布置一些练习题作为课后作业,以巩固学生所学的知识。

五、板书设计

本节课的板书设计图如下:

二次函数:

1. 定义:y=ax^2+bx+c

2. 图像:抛物线图像

3. 性质:开口向上/向下、顶点坐标、轴对称、对称轴...

三角函数:

1. 定义:sinx、cosx、tanx

2. 图像:正弦函数、余弦函数、正切函数的图像

3. 性质:周期、对称、增减性、奇偶性...

六、教学反思

本次课的教学过程中,我注意到学生们对于理论知识的掌握较好,在课堂练习中能熟练运用基本概念和公式。但在应用题的解答中,还存在一定的困惑和不足。因此,在今后的教学中,我将更加注重实际问题的设计和讲解,引导学生将所学的知识运用到实际生活中,提升他们的问题解决能力。

以上就是我对于本堂高二数学课的说课稿,谢谢大家!

【高二数学说课稿 第二篇】

今天我说课的课题是“两条直线所成的角”的第一课时,我准备从以下五个方面来汇报我是如何处理教材和设计教学过程的。

  一.关于教学目标的确定

通过这节课的教学,要使学生掌握两条直线所成角的概念和夹角公式的推导方法,掌握一直线到另一直线的角和两条直线的夹角公式及其应用,正确理解夹角公式成立的条件及特殊夹角的求法。能力的培养也是数学教学不可缺少的一环,通过这节课的教学,应培养学生数形结合的能力和提高他们阅读理解的自学能力。另外渗透“由特殊到一般”的辩证思想和“分类讨论”的思想也是这堂课的重要目标。

  二.关于教材内容的选择和处理

这节课所选用的教学内容是:教材中的定义、公式,但例题的选择较课本难度有所加深,这是因为教材上的例题只是公式的直接应用,通过学生自学和思考老师提出的问题后,对一般学生来说是没有什么问题的。因此,本着因材施教的原则,并着眼于会考与高考的要求,例题的难度有所加深,这样选择教学内容也是与教学目标相符的。

我认为这节课的教学重点是两条直线的夹角公式及其应用,这是因为:

1.《全日制中学数学教学大纲》上明确规定要求学生“掌握两条直线所成的角”。

2. 数学知识的应用也是会考与高考的要求,因此两条直线夹角公式的应用毫无疑问地成为重点。

教学难点是直线L1到L2的角的公式的推导,理由有二:

1. 由于一条直线到另一条直线的角是带方向的角,这是学生不易理解的地方。

2. 在推导直线L1到L2的角的公式的过程中,要进行分类讨论,这是学生的薄弱环节。

  三.关于教学方法的确定

根据这节课的内容和学生的实际水平,我采用自学辅导的方法进行教学。

自学辅导法符合教学论中的自觉性和积极性、巩固性、可接受性,教学与发展相结合,教师的主导作用与学生的主体地位相统一等原则;自学辅导法的关键是通过老师的引导和启发要求学生针对老师提出的问题阅读理解最终解决问题。这样就能充分调动学生学习的主动性和积极性,使学生变被动学习为主动学习。

  四.关于学法的指导

课堂教学的目的就是在给学生传授知识的同时,教给他们好的方法,使他们“会学习”。

这一节课一开始让学生在观察中产生疑问,在疑惑不解中,通过老师的引导。并通过自已阅读教材使疑问逐步解决,这样做既激发了他们的学习欲望,也培养了他们发现问题、解决问题的能力。

在给出例题后,大多数学生能想到利用入射角等于反射角来解决,这时要鼓励学生再“尝试”用其它方法来解,通过尝试,学生的思维能力得到了培养,思维空间得到了拓广,既活跃了课堂气氛,也提高了学生的学习积极性。

  五.关于教学过程的设计

首先引导学生回忆两条直线平行与垂直的判定方法,并从两条直线垂直是两条直线相交的特殊情况出发,引出“两条直线所成的角”这一课题。

接着打出投影片①,让学生通过观察说出图中直线L1与L2所成角的锐角(或直角)θ的大小,并要求给出θ与直线L1、L2的倾斜角α1、α2之间的关系。图(1)、(2)学生容易观察解决,而图(3)、(4)却无法直接观察出θ的大小 ,但能确定θ与α1、α2之间的关系,这时老师应趁热打铁,引导学生走上“已知三角函数值求角”的正确轨道上。这样设计,使学生目标明确,避免盲目性。

老师挂出小黑板,出示问题(1)—(5),让学生带着问题阅读教材,使他们明确直线L1到L2的角的公式与两直线夹角公式的联系与区别。这样既培养了学生思考和自学能力,又使他们主动积极地参与教学活动。

阅读完后先回答问题(1)—(5),这时为了学生对所学公式有较深的理解,先让学生将开始给出的图(3)、(4)作为课堂练习进行巩固训练,并要两位学生演板,演板后师生共同订正。接着为了使学生对两条直线所成的角有较全面的认识,老师与学生共同讨论各种位置的两条直线所成角的情形,这样的安排也是为高考《考试说明》中要求掌握“逻辑划分(分类讨论)的思想”而设计的,目的是让学生形成对知识系统化和网络化的认识,也突破了本节课的难点。

“精通的目的在于学习”。公式的应用是这节课的重点,在学生把概念和公式的来龙去脉搞清楚后,再打出投影片②(例题),例题是根据《会考纲要》中“能用坐标法解决涉及直线的简单应用(如的反射问题、有关轴对称和点对称问题)”的要求而选取的。大多数学生可以想到利用反射角等于入射角来求解,此时,进一步引导学生从对称的角度来思考,又有两种求解方法(见投影片)。

例题讲完后再将问题加以引申,这样的设计主要是让学有余力的学生没有“饥饿感”。

课堂小结是教学的重要环节之一,为了便于学生记忆和理解,我把这堂课的内容归纳为两个概念、两个公式和四种情形。给出两个思考题(见投影片③)。思考题的目的是促使学生正确、周密地思考问题,同时为讲解下一节课作准备,起承上启下的作用。

最后是布置作业,它是紧紧围绕本节课的教学内容而选择的,通过作业的训练可以及时反馈学生所学知识的掌握程度。

以上我从五个方面阐述了“两条直线所成的角”中第一课时教学内容的有关设想,不足之处,请各位老师批评赐教。

【高二数学说课稿 第三篇】

尊敬的各位评委、老师:

您们好!

今天我说课的内容是人教版高二第二册(上)第七章第三节第4课时:“点到直线的距离”.

下面根据我写的教案,把我对本节课的教材分析、教学方法和教学用具、教学过程以及教学评价等方面的认识做一个说明.敬请各位专家多提宝贵意见.

  一、关于教材分析

1、教材的地位和作用

“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的.此外在研究直线与圆的位置关系、曲线上的点到直线的距离以及解析几何中有关三角形面积的计算等问题时,都要涉及点到直线的距离.所以“点到直线的距离公式”是平面解析几何的一个重要知识点.由于这一节是直线内容的结尾部分,学生已经具备直线的有关知识(如交点、垂直、向量、三角形等),因此,一方面公式的推导成为可能,另一方面公式的推导也是检验学生是否真正掌握所学知识点的一个很好的课题.通过公式推导的获得,可以培养学生分析问题、解决问题的能力,以及自主探究和合作学习的能力.

2教学目标分析

我确定教学目标的依据有以下三条:

(1)教学大纲、考试大纲的要求

(2)新教材的特点

(3)所教学生的实际情况

教学目标包括:知识、能力、德育等方面的内容.

“点到直线的距离公式”是平面解析几何重要的基础知识,也是教学大纲和考试大纲要求掌握的一个知识点.按照大纲“在传授知识的同时,渗透数学思想方法,培养学生数学能力”的教学要求,结合新教材向量的引入,又根据所带班级学生基础和素质教好的情况,我把本节课的教学目标确定为:

(1)让学生理解点到直线距离公式的推导思想,掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离;

(2)通过推导公式方法的发现,培养学生观察、思考、分析、归纳等数学能力;在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法;

(3)通过本节学习,引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感.

3、教学重点:点到直线距离公式的推导和应用.

教学难点:发现点到直线距离公式的推导方法.

  二、关于教学方法和教学用具的说明

1、教学方法的选择

(1)指导思想:在“以生为本”理念的指导下,充分体现“教师为主导,学生为主体”.

(2)教学方法:问题解决法、讨论法等.

本节课的任务主要是公式推导思路的获得和公式的推导及应用.我选择的是问题解决法、讨论法等.通过一系列问题,创造思维情境,通过师生互动,让学生体验、探究、发现知识的形成和应用过程,以及思考问题的方法,促进思维发展;学生自主学习,分工合作,使学生真正成为教学的主体.

2、教学用具的选用

在选用教学用具时,虑到,在本节课的公式推导和例题求解中思路较多,所以采用了计算机多媒体和实物投影仪作为辅助教具.它可以将数学问题形象、直观显示,便于学生思考,实物投影仪展示学生不同解题方案,提高课堂效率.

  三、关于教学过程的设计

“数学是思维的体操”,一题多解可以培养和提高学生思维的灵活性,及分析问题和解决问题的能力.课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性.课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境提出问题——自主探索推导公式——变式训练学会应用——学生小结教师点评——课外练习巩固提高”五个环节来完成.下面对每个环节进行具体说明.

(一)[创设情境提出问题]

1、这一环节要解决的主要问题是:

创设情境,引导学生分析实际问题,由实际问题转化为数学问题,揭示本课任务.同时激发学生学习兴趣,培养学生数学建模能力.

2、具体教学安排:

多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?

学生很快想到建立坐标系.如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”.

(二)[自主探索推导公式]

1、这一环节要解决的主要问题是:

充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式.在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透.

2、具体教学安排:

2.1学生初探解决特例

首先提出问题:怎样用解析几何方法求解点到直线距离?由于字母的运算有难度,引导学生从直线的特殊情况入手,这样问题比较容易解决.学生应该能想到,如果直线是坐标轴或平行坐标轴的时候问题比较容易解决,给予学生肯定的评价.学生自己完成推导过程,选两名学生进行板演.

2.2师生互动获取思路

特殊情况已经解决,引导学生考虑一般直线的情况.通过学生思考,教师收集得到思路一:过P作PQ ⊥ l于Q点,根据点斜式写出直线PQ方程,由PQ与l联立方程组解得Q点坐标,利用两点距离公式求得.

我及时评价这种方法思路自然,是一种解决办法.为了拓展学生思维,我们根据已有的知识和经验,还有什么办法能解决?为此我启发学生,提出问题:

(1)求线段长度可以构造图形吗?

(2)什么图形?如何构造?(学生经过讨论,得到构造三角形,把线段放在直角三角形中.)但是如何构造又是一个难点.

(3)第三个顶点在什么位置?

(4)特殊情况与一般情况有联系吗?

学生通过观察、讨论会提出第三个顶点的不同位置:可能在直线l与x轴的交点M或与y轴交点N;或根据特殊情况的证法提示,过P点作x、y轴的平行线与直线l的交点R、S.或同时做x、y轴平行线.这样就收集到思路二、三、四.

三种思路已经有了,它们的共性是什么?学生能观察出都在三角形中.我继续引导:能不能不构造三角形?而是其它数学相关量?我们刚学习了向量知识,能否用向量知识解决问题呢?(由于在前面学习的向量知识中,向量的模可以表示两点之间的距离,而证明两直线垂直时也已经用到向量知识,法向量又是本节课后阅读材料,本班学生基础和素质较好,在学习直线方向向量时已经布置阅读).

提出问题:线段的长度就是对应向量的模,那么如何求得向量PQ的模呢?根据实际情况提示一方面PQ的方向完全由直线的方向而定(与法向量共线),另一方面PQ的长度又与点P有关,它的长度又如何控制下来?所以有思路五,由师生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距离.

2.3分工合作自主完成

学生提出了不同的解决方案,究竟哪种好呢?如果让每位学生都去用不同解法探求,在课堂上时间显然是不允许的,但教学中又要培养学生的运算能力,如何解决这种矛盾呢?现代教育要求学生要有自主学习、合作学习能力,因此我叫学生对五种思路进行分组练习.

在学生求解过程中,我巡视,观看学生解题,了解情况,根据课堂时间的实际情况,选取做好的学生的解题过程用实物投影仪显示.这样不仅能让全体学生看到不同思路的具体解法,还能得出最佳解题方案,接着我展示最佳解题方案的规范步骤.目的让学生有良好的规范的`书面表达习惯,起到教师典范的作用.

2.4公式小结概括提升

公式推导出,学生有了成功的喜悦.我也给予了肯定.但是由于公式的结果是一般情况得出的,而对于当A = 0,或B = 0时,点在直线上是否成立,它们与当AB ≠ 0时,点在直线外有什么关系?这并没有验证.而我们要求学生考虑问题要全面,为此我提出提问:①上式是由条件下当AB ≠ 0时得出,对当A = 0,或B = 0时成立吗?②点P在直线l上成立吗?③公式结构特点是什么?用公式时直线方程是什么形式?通过学生的讨论,使学生了解公式适用的范围:任意点、任意直线.同时体现整体认识和分类讨论思想.

依据新课程的理念,教师要创造性地使用教材.在公式的推导过程中,我做了和教材不同的处理方法:(1)先特殊后一般的证法,(2)多角度构造三角形,(3)知识联系,向量解决.目的是让学生在考虑问题时有特殊到一般的意识,符合学生认知规律,使问题的解决循序渐进.向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而多角度考虑问题,发散学生思维.

(三)[变式训练学会应用]

1、这一环节解决的主要问题是:

通过练习,熟悉公式结构,记忆并简单应用公式.通过例题的不同解法,进一步让学生体会转化(或化归)的数学思想.

2、具体教学安排:

由学生完成下列练习:

(1)解决课堂提出的实际问题.(学生口答)

(2)求点P0(-1,2)到下列直线的距离:

①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1

设计说明:练习1的设计解决了上课开始提出的实际问题.练习2的设计故意选特殊直线和非直线方程一般式,主要强调在公式应用时,直线方程是一般式,应用公式的准确性.

例题(3)求平行线2x-7y+8=0和2x-7y-6=0的距离.

我选取的是课本例题,课本只有一种具体点的解法.我通过本节课的学习,让学生对知识从深度和广度上进行挖掘.通过几何画板的演示,让学生直观看到思考问题的方法.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,作和.或者选取直线外的点P,求它到两条直线的距离,作差.由特殊点到任意点,由特殊直线到任意直线,从而延伸出两平行线间的距离.目的是在整个过程中,让学生注意体会解题方法中的灵活性以及转化等数学思想方法.

(四)[学生小结教师点评]

1、这一环节解决的主要问题和达到的目的是:

通过师生共同小结,巩固所学知识,提炼用到的解决问题的方法,其中蕴涵的数学思想方法,培养学生归纳概括能力.

2、具体教学安排:

本节课小结主要由学生完成知识总结,通过学习知识所体验到的数学思想方法,由学生总结和相互补充,教师适当点评,加以经验总结.

(五)[课外练习巩固提高]

1课本习题7.3的第13题—16题;

2 总结写出点到直线距离公式的多种方法.

设计说明:作业1是课本习题,检查学生所学知识掌握的程度.作业2是根据课堂分析,让学生总结公式推导的方法.除了课堂上想到的方法还可以继续思考,比如在用两点距离公式整体代换等方法,发挥学生学习的自主性和思维的广阔性.

  四、关于教学评价的设计

新课程标准提出要加强过程性评价,因而在具体教学过程中,我对于学生的语言与行为的表现,及时给予肯定性的表扬和鼓励;学生思维暴露出问题时及时评价,矫正思维方向,调整教学思路;为了获得后反馈信息,布置作业,通过观察学生完成作业情况,了解学生在知识技能和数学方法方面的收获和不足,指导我今后教学.整个教学评价是在师生互动中完成的.

以上是我对这节课的设计,恳请各位专家和老师批评、指正.

谢谢!

【高二数学说课稿 第四篇】

  一:教材分析:

1、教材的地位与作用:本节课要讲的是正、余弦函数的性质,它是历年高考的重点内容之一,在高考中常以选择题、填空题的形式出现。有时与其它三角变换、函数的一般性质综合。考查灵活,常有创新性。这就要求我们注意运用三角函数的性质培养学生善于运用三角函数的性质解决问题。因此,学好这节课不仅可以为我们今后学习正切、余切函数的性质打下基础,还可以进一步提高学生分析问题和解决问题的能力,它对知识起到了承上启下的作用。

2、教学目标的确定:根据教参及教学大纲的要求,依据教学目的以及学生的实际情况,制定如下的教学目标:

(1)知识目标:正、余弦函数的性质及应用(定义域、值域、最大、最小值、奇偶性、单调性)

(2)能力目标:

a:掌握正、余弦函数的性质;

b:灵活利用正、余弦函数的性质

(3)德育目标:

a:渗透数形结合的思想

b:培养联合变化的观点

c:提高数学素质

3、教学重点和难点的确定及依据;

由于正、余弦函数的主要性质在本节中有着重要的地位。因此,成为本节课的重点,在教学中,单调性、奇偶性和周期性是学生第一次接触的三个概念,而函数的单调性、奇偶性以及周期函数,周期,最小正周期的意义是本节教学中学生第一次接触的内容。这在学生的基础上理解有一定的难度。因此成为本节课的难点。那么克服本节课的难点的关键在于复习好正、余弦函数图象的意义,充分利用图形讲清正、余弦函数的特点,梳理好讲解顺序,使学生通过适当的练习正确理解概念、图象、特性、实现教学目标和进一步提高学生的学习探索能力,充分发挥学生的主体作用。

  二:教材处理:

正、余弦函数的性质,其中定义域、值域、最大值、最小值,学生以前已接触过,所以只需简单提示。但是单调性,奇偶性,周期性是学生第一次接触到的,考虑到学生的基础参差不齐,接受能力不同,因此在教学中要顾全局,耐心讲解,并通过适当的教具启发调动学生的主观能动性。

  三、教学方法和手段:

1、教学方法:启发诱导式教学方法,为增强图象的形象直观性,增大教学内容,提高效率。我利用计算机,在此基础上,学生运用观察法、发现法、学习法、归纳法以及练习法进行学习,在教学过程中,首先我以习提问形式引入课题,意义使学生利用类比思想,认识到研究三角函数的方向所在,减少盲目性。为了有利于学生正确了解正、余弦图形的性质,我又指导了学生复习正、余弦函数的图象。再从介绍图象的特点让学生观察、发现、归纳函数的性质。同时结合不同例子巩固所学的知识,训练学生的知识应用能力。辅助教的充分利用使得教学生动而有条理,使学生认识到数归思想、数形结合在学习知识中的作用。

2、教学手段:根据本节课的特点,要在正、余弦函数的图象的基础上操作性质,所以有条件的话不防可用动画的形式表现,给学生一种直观形象,不仅激发了学生的创造性思维能力,更起到了事半功倍的效果。

  四、教学过程:

1、复习导入:

通过复习已学过的正、余弦函数的图象,不妨叫学生自己作图,这样不仅复习了上节课的五点作图法,还可以引出新课,正、余弦函数的性质

2、新课

a:打出多媒体课件,不妨叫学生自己观察正、余弦函数的图象,定义域和值域,最大值,最小值,学生应该都能观察出来,只须稍微强调一下。

b:周期函数的定义:可有诱导公式sin(x+2kn)=sinx

得出函数值是按一定的规律重复取的,给出定义,讲解定义时,要特别强调“作零常数t”,及“对于定义域的每一值,都要有f(x+t)=f(x)成立,也就是说,如果在定义域内的每一个值使得f(x+t)=f(x)成立。非零常数t就是周期了,不妨举一个例子,是否正弦函数的周期,sin(n/2+x)是否等于sin(x)还应强调并不是所有的函数都会有最小正周期。

c:奇偶性:在讲解定义时,应该强调,在判断函数是否为奇偶函数时,必须先看其定义域是否关于原点对称,后再由f(x)=f(-x)或f(-x)=-f(x),也就是说,定义域关于原点对称,一个函数有奇偶性的必要条件,还应强调并不是所有的函数都有奇偶性,但也有函数既是奇函数,也是偶函数。可以举例说明:奇函数一定关于原点对称,偶函数一定关于y轴对称。反之也成立。

d:在讲解周期性、奇偶性、单调性时可有多媒体课件实现。

(1)、对称轴:y=sinx的对称轴是x=kn+n/2;y=cosx的对称轴是x=kn;对称性;

(2)对称中心:y=sinx的对称中心是(kn,0)y=cosx的对称中心是(kn+n/2,0)

当y=sinxx∈[-n/2+2kn,n/2+2kn]时,曲线逐渐上升,y的值由-1逐渐增加到1;

单调性x∈[n/2+2kn,n/2+2kn]时,曲线逐渐下降,y的值由1逐渐减少到-1;

当y=cosxx∈[-n+2kn,2kn]时,曲线逐渐上升,y的值由-1逐渐增加到1;

x∈[2kn,n+2kn]时,曲线逐渐下降,y的值由1逐渐减少到-1;

  五、例题讲解:

例1:

cos(-23n/5)-cos(-17n/4)

问:能否求出上式的值?能否求出其值比0大还是小?须运用我们这节课所学的哪部分知识?

求上式的值大于0还是小于0?

∵y=cosx是偶函数,∴原式为cos(23n/5)-cos(17n/4)

可知cos(23n/5)

即cos(-23n/5)-cos(-17n/4)<0

例2:y=√sinx+1

提出问题:学生能提出什么问题?

教师引导:上式有没有最大值,最小值,值域,什么时候取得最大值?什么时候取得最小值?奇偶性如何?能不能画出它的图象?图象与y=cosx有什么关系?

求取的最大值的x的值所有集合。

当x取最大值时的取值为x=kn+n/2(k∈r)

即取的最大值的x的值的所有集合为[x∣x=kn+n/2(k∈r)]

例3:y=√sinx的定义域。

由0≦sinx≦1可得:

x的定义域为:2kn≦x≦&pro

d;+2kn(k∈r)

即x的定义域为[2kn,n+2kn](k∈r)

问:可不可以求值域?有没有奇偶性?如果有的话,是奇函数还是偶函数?

拓展:求上式函数的奇偶性。一般来讲,学生会用定义法求出上式既不是奇函数,也不是偶函数。

结果:上式既不是奇函数,也不是偶函数。

问:为什么呢?

强调:函数有奇偶性的必要条件是定义域关于原点对称。

  六、课堂小结:

通过本节学习,要求掌握正、余弦函数的性质以及性质的简单应用,解决一些相关问题。

  七、作业布置:

使学生通过作业进一步掌握和巩固本节内容

【高二数学说课稿 第五篇】

  一、概说

1.教材分析:

椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

2.教学分析:

椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

3.学生分析:

高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

我设定的教学重点是:椭圆定义的理解及标准方程的推导。

教学难点是:标准方程的推导。

  二、目标说明:

根据数学教学大纲要求确立“三位一体”的教学目标。

1.知识与技能目标:

理解椭圆定义、掌握标准方程及其推导。

2.过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

3.情感、态度和价值观目标:

(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

(2)进行数学美育的渗透,用哲学的观点指导学习。

  三、过程说明:

依据“一个为本,四个调整”的新的教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:

(一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。

(二)在教学过程中的体现:

1.新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

2.新课呈现:

学生通过观看文件、动手操作,自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

3.巩固应用

根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

4.继续探究:

(1)观察椭圆形状,不同原因在哪里;

(2)改变绳长或变换焦点位置再画椭圆,发现关系;

(3)用几何画板交流画图,观察形状变化;

(4)如何描述形状变化?

引导学生探究欲望,开展研究习。

四、评价说明

本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

  五、说课总结

这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。

【高二数学说课稿 第六篇】

异面直线所成角说课稿《异面直线所成角》是高中数学《立体几何》一章中的第二节《空间两直线》中的重要内容、《立体几何》是高中数学教学中相对的一章,而本节内容恰是把平面内的直线扩展为空间任两条直线的位置关系问题,是培养学生建立空间想象力的关键,下面就从以下四个方面说课。

第一方面:教学设计意图

高中《数学教学大纲》要求学生具有良好的空间想象力和一定的作图识图能力,本节教学也要求培养学生对空间两直线所成角这一立体概念的理解,在此基础上,再依据对学生进行素质教育的目标制定了以下教学目标:

1、认知目标:理解空间两异面直线所成角的概念,并会作出,求出两异面直线所成角。

2、能力目标:培养学生的识图,作图能力,在习题讲解中,培养学生的空间想象力和发散思维。

3、德育目标:在对学生进行创造性思维培养的同时,激发学生对科学文化知识的探求热情和逻辑清晰的辩证主义观点。

本节课的重,难点:

教学重点:对异面直线所成角的概念的理解和应用。

教学难点:如何在实际问题中求出异面直线所成角。

第二方面:教法的选定

本节内容作为《立体几何》中两大重要概念之一––––"角"的初次接触,就要求学生能牢固的落实两异面直线所成角的概念及作法,并能对具体问题求出所成角,这样才能真正提高其空间想象力,根据上述目标要求和学生思维模式缺乏"立体性"这一特点,我采用了"练习教学法",从习题入手,辅以计算机,将平面图形"立"起来,为学生创设较好的思维空间,增强了教学的直观性,再利用"问题中心式"教法,提出问题,对学生进行启发,让学生自己动脑,动口,动手,这样既可以发挥教师的主导作用,又突出了学生的主体地位、

第三方面:学法的指导

要从两个方面教会学生落实本节内容。

1、根据计算机所设计的空间几何图形,带领学生去识图,读图,作图,并能依据图形的特点去分析,作出或找出所要求的所成角,从而加强学生的图形空间想象力。

2、找到所求角后,还需指导学生利用逻辑的分析和学过的平面几何知识最终解决问题。

第四方面:教学过程和板书设计

第一步:采用"温故式导入",提问学生"两异面直线所成角"的定义,加深学生对概念的掌握,在同学回答的同时,由计算机打出概念,并在重点字"锐角或直角"处闪动,突出重点。

再利用计算机演示空间两异面直线所成角的作法,重点体现选取不同点平移均可。

第二步:进入例题讲解:"如何对具体问题求异面直线所成角呢"

首先,由计算机给出本节第一道例题,及图。

教师带领学生一起审题,该题为求证"两直线平行"的简单证明题,其目的在于加强学生对异面直线所成角概念的理解,突出选取"空间任一点平移直线均可"这一原则,为此,特由计算机设计出选取不同点平移的图及证法,再一次强调概念。

,进入第二道例题,同样由计算机给出题目和图,该题为"在已知正方体内求两组异面直线所成角问题",不同于前题教法处在于,在教师进行了启发性提问后,由计算机给出3个不同选点,教师让同学自己分析并到前面操作电脑,选取解法,用计算机进行演示,并由学生自己讲解、最后由教师对学生的解法进行归纳总结,从而得出"对特殊几何体中异面直线所成角问题应以几何体为依托,寻找特殊位置进行平移,并利用三角函数及平面几何知识进行求解"这一结论。

例3的讲解思路及方法同例2相同。

内容仅供学习,如需复制请赞助VIP会员,赞助后即可全站范文免费复制!


赞助会员请点击:开通会员

×